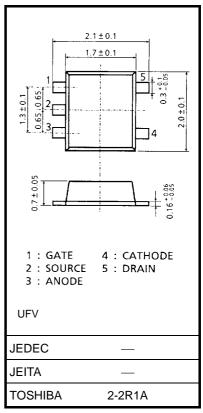
Silicon P Channel MOS Type (U-MOSⅢ)/Silicon Epitaxial Schottky Barrier Diode

SSM5G09TU

DC-DC Converter

Unit: mm


- Combined Pch MOSFET and Schottky Diode into one Package.
- Low RDS (ON) and Low VF

Maximum Ratings (Ta = 25°C) MOSFET

Characteristics		Symbol	Rating	Unit	
Drain-Source voltage		V_{DS}	-12	V	
Gate-Source voltage		V _{GSS}	±8	V	
Drain current	DC	I _D	-1.5	Α	
	Pulse	I _{DP} (Note 2)	-6.0	A	
Drain power dissipation		P _D (Note 1)	0.5	W	
		t = 10s	0.8	VV	
Channel temperature		T _{ch}	150	°C	

Maximum Ratings (Ta = 25°C) SCHOTTKY DIODE

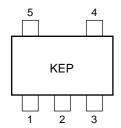
Characteristics	Symbol	Rating	Unit
Maximum (peak) reverse voltage	V_{RM}	15	V
Reverse voltage	V_{R}	12	V
Average forward current	IO	0.5	Α
Peak one cycle surge forward current (non-repetitive)	I _{FSM}	2 (50 Hz)	А
Junction temperature	Tj	125	°C

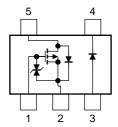
Weight: 7 mg (typ.)

Maximum Ratings (Ta = 25°C) MOSFET, DIODE COMMON

Characteristics	Symbol	Rating	Unit
Storage temperature	T _{stg}	-55~125	°C
Operating temperature	T _{opr} (Note 3)	-40~85	°C

Note 1: Mounted on FR4 board


 $(25.4 \text{ mm} \times 25.4 \text{ mm} \times 1.6 \text{ t}, \text{ Cu pad: } 645 \text{ mm}^2)$


Note 2: The pulse width limited by max channel temperature.

Note 3: Operating temperature limited by max channel temperature and max junction temperature.

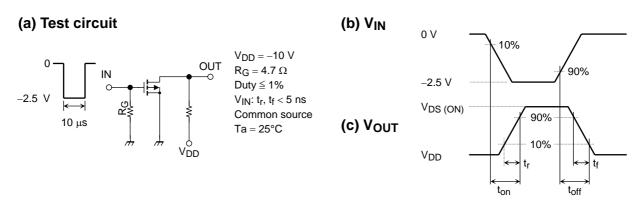
Marking

Equivalent Circuit

Handling Precaution

When handling individual devices (which are not yet mounted on a circuit board), ensure that the environment is protected against static discharge. Operators should wear anti-static clothing and use containers and other objects that are made of anti-static materials.

The Channel-to-Ambient thermal resistance R_{th} (ch-a) and the drain power dissipation P_D vary according to the board material, board area, board thickness and pad area. When using this device, be sure to take heat dissipation fully into account.


MOSFET

Electrical Characteristics (Ta = 25°C)

Chara	acteristic	Symbol	Test Condition	Min	Тур.	Max	Unit
Gate leakage curre	ent	I _{GSS}	$V_{GS} = \pm 8 \text{ V}, V_{DS} = 0$	_	_	±1	μА
Drain-Source breakdown voltage		V (BR) DSS	$I_D = -1 \text{ mA}, V_{GS} = 0$	-12	_	_	V
		V (BR) DSX	$I_D = -1 \text{ mA}, V_{GS} = +8 \text{ V}$	-4	_	_	
Drain Cut-off currer	nt	I _{DSS}	$V_{DS} = -12 \text{ V}, V_{GS} = 0$	_	_	-1	μΑ
Gate threshold volt	age	V_{th}	$V_{DS} = -3 \text{ V}, I_D = -0.1 \text{ mA}$	-0.5	_	-1.1	V
Forward transfer ad	dmittance	Y _{fs}	$V_{DS} = -3 \text{ V}, I_D = -0.75 \text{ A}$ (Note 4)	1.75	3.5	_	S
Drain-Source on-resistance		R _{DS} (ON)	$I_D = -0.75 \text{ A}, V_{GS} = -4 \text{ V}$ (Note 4)	_	100	130	mΩ
			$I_D = -0.75 \text{ A}, V_{GS} = -2.5 \text{ V}$ (Note 4)	_	130	200	
Input capacitance		C _{iss}	$V_{DS} = -10 \text{ V}, V_{GS} = 0, f = 1 \text{ MHz}$	_	550	_	pF
Reverse transfer capacitance		C _{rss}	$V_{DS} = -10 \text{ V}, V_{GS} = 0, f = 1 \text{ MHz}$	_	155	_	pF
Output capacitance		Coss	$V_{DS} = -10 \text{ V}, V_{GS} = 0, f = 1 \text{ MHz}$	_	170	_	pF
Switching time	Turn-on time	t _{on}	$V_{DD} = -10 \text{ V}, I_D = -0.75 \text{ A}$	_	34	_	no
	Turn-off time	t _{off}	$V_{GS} = 0 \sim -2.5 \text{ V}, R_G = 4.7 \Omega$	_	28	_	ns

Note 4: Pulse measurement

Switching Time Test Circuit

Precaution

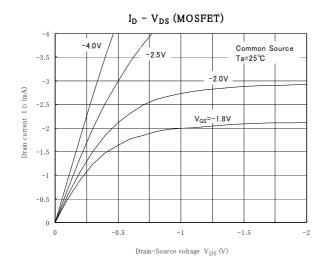
 V_{th} can be expressed as the voltage between the gate and source when the low operating current value is ID = $100~\mu A$ for this product. For normal switching operation, V_{GS} (on) requires a higher voltage than V_{th} and V_{GS} (off) requires a lower voltage than V_{th} . (The relationship can be established as follows: V_{GS} (off) < V_{th} < V_{GS} (on).)

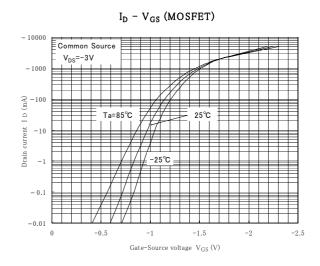
Be sure to take this into consideration when using the device. The VGS recommended voltage for turning on this product is -2.5V or higher.

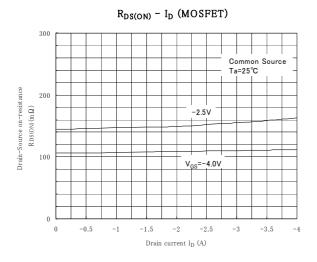
3

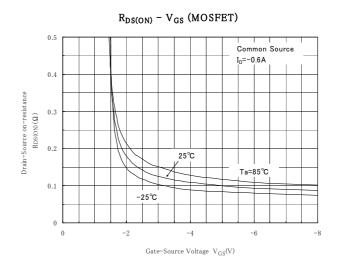
Schottky Diode

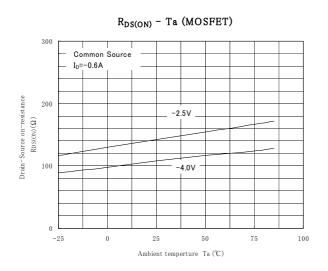
Electrical Characteristics (Ta = 25°C)

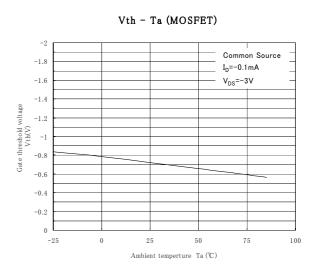

Characteristic	Symbol	Test Condition	Min	Тур.	Max	Unit
Forward voltage	V _{F (1)}	I _F = 0.3 A	_	0.33	0.39	V
	V _{F (2)}	I _F = 0.5 A	_	0.37	0.43	V
Reverse current	I _R	V _R = 12 V	_	_	100	μΑ
Total capacitance	C _T	V _R = 0 V, f = 1 MHz		80		pF

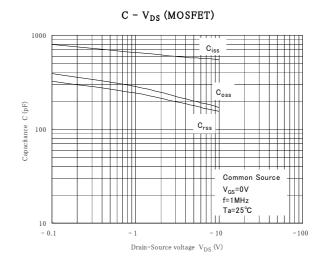

Precaution

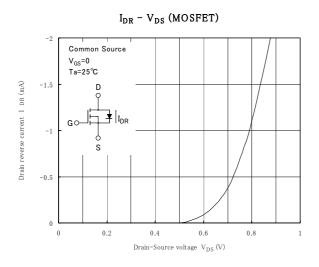

The schottky barrier diode of this product are having large-reverse-current-leakage characteristic compare to the other switching diodes. This current leakage and not proper operating temperature or voltage may cause thermal runaway. Be sure to take forward and reverse loss into consideration when you design.

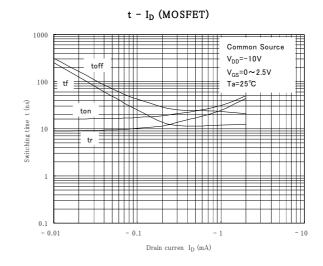

4

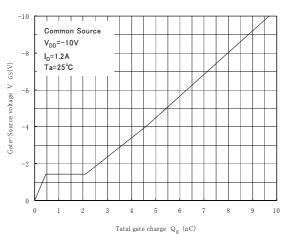

MOS Electrical Characteristics Graph

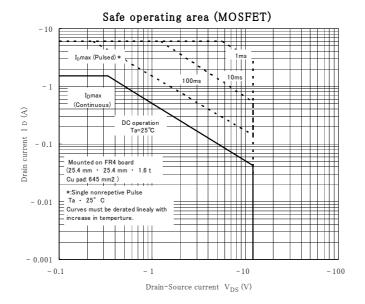


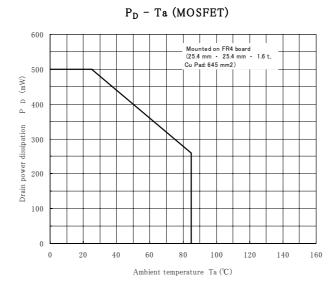


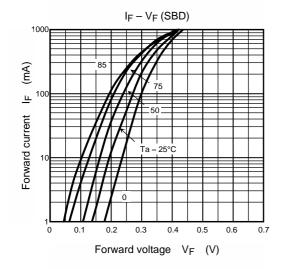


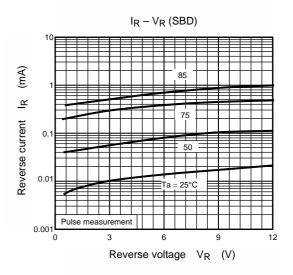


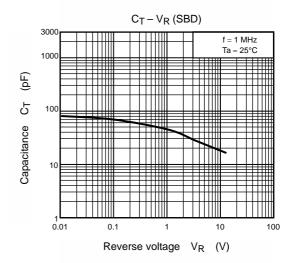


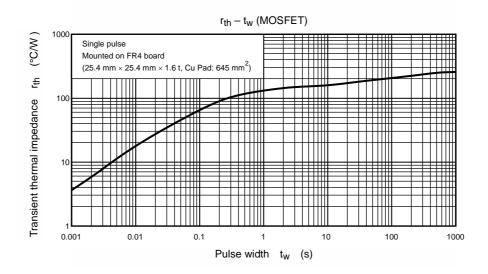


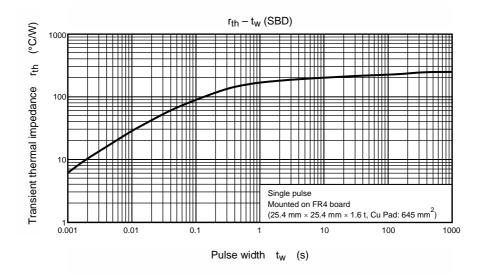



Dynamic Input Characteristic (MOSFET)






SBD Electrical Characteristics Graph



Transient thermal impedance Graph

9 2004-01-16

RESTRICTIONS ON PRODUCT USE

030619EAA

- The information contained herein is subject to change without notice.
- The information contained herein is presented only as a guide for the applications of our products. No
 responsibility is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which
 may result from its use. No license is granted by implication or otherwise under any patent or patent rights of
 TOSHIBA or others.
- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property.
 In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc..
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.
- TOSHIBA products should not be embedded to the downstream products which are prohibited to be produced and sold, under any law and regulations.